• Start
  • Previous
  • 16 /
  • Next
  • End
  •  
  • Download HTML
  • Download Word
  • Download PDF
  • visits: 15594 / Download: 3968
Size Size Size
The Origins of Islamic Science

The Origins of Islamic Science

Author:
Publisher: www.muslimheritage.com
English

This book is corrected and edited by Al-Hassanain (p) Institue for Islamic Heritage and Thought

2. Islam as a Source of Inspiration for Science and Knowledge ('Ilm)

2.1. The Rise of Islam and the Early Intellectual Fertilisation

The 7th century witnessed the intellectual and cultural transformation of the Arab people principally as a result of some unique events that occurred in Arabia. The preaching of Islam (da‘wah) by the Prophet Muhammad to his fellow tribesmen, and their reluctant but gradual conversion to the new faith through a process of persuasion and political struggle, influenced the behaviour and outlook of the Arabians, who became imbued with a new sense of purpose. For the first time they were exposed to a set of new ideas on the creation, the Supreme Creator, the purpose of life on Earth and in the Hereafter, the need for a code of ethics in private and public life, the obligation to worship the one and only Lord Almighty of the Universe (Allah), through ritual prayers on a regular basis and sessions of remembrance (dhikr, plural adhkar) or meditation, and to pay homage to a religious and political head as personified by the Prophet Muhammad and, to his Successors or Caliphs (Ar., Khalifah, pl. Khulafa') as leaders of the new community (ummah). All this was new to the Arabs. The whole package of Islamic teachings was propagated by the Prophet and accepted by his fellow Arabs within a generation (610-632 CE).

The Prophet Muhammad taught the peoples of Arabia a great deal. Before the advent of Muhammad, the Arabs had no books and no sacred scriptures. The Qur'an was the first Arabic book and the first scripture in the Arabic language. Its chapters and verse were unique in style and substance in purest Arabic. The Arabs who, from time immemorial, had memorised poems and proverbs, found it easy to learn a part or the whole of the Qur'an for ritual prayer. For the Arabs, the Qur'an, it would seem, was a substitute for old Arabic poetry. The difference was that poetry was recited at home and in the market, whereas the Qur'an was recited only after ablution and reverential devotion. Incidentally, the word“al-Qur'an” means ‘the recitation' or the reading. It is essentially a book of revelation from God, embodying Islamic law and ethical code.

Through an understanding of the Qur'an, the Arabs began to think and behave differently from their polytheistic ancestors (mushrikun), becoming more like Jews and Christians in their monotheism. Thus they had begun to reflect on the mysteries of the universe and the importance of being imbued with a sense of brotherhood. For the first time their lives were regulated by a book of revelation and were turned around by it. The Qur'an was to Muslims what the Bible was to the Christians and the Torah to the Jews; and they were more affected by the Qur'an than Christians and Jews were by their Scriptures.

Figure 6: The title page of Ibn Sina's (11 century CE) Kitab Al-Qanun fi al-Tibb taken from a printed copy of the book, based on a Florentine manuscript, in the rare book collection of the Sibbald Library at the Royal College of Physicians of Edinburgh.

When the Islamic education was introduced to his disciples by the Prophet through the process of da‘wah (‘call to Islam'), it was as though a whole people went to school to read, write and memorise their first primer, al-Qur'an. Among the celebrated teachers of the Qur'an in early Islam, were ‘Ubadah ibn al-Samit, Mus‘ab ibn ‘Umayr, Mu‘adh ibn Jabal, ‘Amr ibn Hazm[22] , and Tamim al-Dari. These teachers were sent to various parts of Arabia and beyond. Islamic education begins with the lessons of the Qur'an. It is a religious duty and an obligation for every Muslim to preach and teach to his fellow Muslims and non-Muslim acquaintances what he knows of the Qur'an and the Traditions. Such a process of informal mass education and Islamisation began in the Arabian Peninsula during the Prophet's last years and the process was carried forward under his successors. These early Muslims also became familiar with the life style of the Prophet (Sunnah). Everything the Prophet said, did, approved of, condemned and encouraged others to do became the source of inspiration for Muslims and the Sunnah (custom, or Islamic way of life) for the Muslim community. The Qur'an describes Muhammad as the unlettered/illiterate Prophet (al-Nabi al-Ummi)[23] , which was true at the time of his receiving the first revelation from God through the angel Gabriel (Jibril) at the age of 40, when he was ordered to ‘Read in the Name of God who creates, creates man from congealed clot; Read and your Lord is most gracious, Who teaches by the pen; (He) teaches what man(kind) does not know'[24] . To Archangel Gabriel's command, Muhammad replied that he was unable to read, a clear indication of his illiteracy, his knowledge of Jewish and Christian religions being based on what Gabriel communicated to him directly. However, according to an authority on Muhammad, after he received the divine order to ‘read' (Iqra'), ‘he could - and did - learn how to read and write, at least a bit'[25] . This explains how letters he dictated to his amanuenses were signed by him. Therefore, by the end of his life Muhammad was literate. The collection of Muhammad's words and thoughts and his tacit approval is known as hadith (plural ahadith). This hadith became one of the basic sources of Islam.

2.2. The Islamic Background to Intellectual Activity

The question that now arises is: ‘What is the relevance of the Qur'an and Hadith to Islamic science?' To begin with, everything Islamic is influenced by these two sources. The learning process of the Arabs began with the Qur'an and everything else followed accordingly. The Prophet told his disciples:“Wisdom (Hikmah) is the object for the believers” [26] . Thus Muhammad created an incentive to pursue all kinds of knowledge, including science and philosophy.

The questions that we should ask and to which we should find answers are: ‘does Islam encourage or stifle knowledge in a broad sense and secular sciences in particular? Is there any conflict between reason (‘aql) and revelation (wahy) in Islam?'

The Arabic term ‘ilm literally means science and knowledge in the broadest sense. It is derived from the Arabic verb ‘alima, to know, to learn. Therefore, ‘ilm implies learning in a general sense. The Prophet Muhammad, like all the Semitic Prophets before him, was an educator and spiritual mentor. He contended that the pursuit of knowledge (‘ilm) is a duty (fardh) for every Muslim[27] . This statement unmistakably attaches the highest priority to knowledge and encourages Muslims to be educated. Another statement praises religious knowledge even more highly, maintaining that it is a key to various benefits and blessings and that those who teach the Qur'an and Hadith have inherited the role of the ancient Prophets[28] . In a separate statement, Muhammad said that the scholars of religion (‘ulama') are the trustees of the Messengers (of God) (umana' al-Rusul)[29] . In praise of knowledge, the Prophet also said that the pursuit of knowledge is superior to ritual prayer (Salah), fasting (during Ramadan), pilgrimage (Hajj) and the struggle for Islam (Jihad) in promoting the cause of God[30] . This last Tradition is often misinterpreted by some Muslims who think (quite mistakenly) that religious learning and the pursuit of science exempts them from prayer, fasting, pilgrimage and Jihad. This is not at all the intention of the statement. What it emphasizes is that religious education is no less important than the time and efforts devoted to Salah, Sawm, Hajj and Jihad. Thus learning gets priority over those usual duties of a believer.

Figure 7: Nasir al-Din al-Tusi is pictured at his writing desk at the high-tech observatory in Maragha, Persia, which opened in 1259. © British Library.

The concept of science and knowledge was also widely diffused in the Prophet's Traditions and in Arabic belles lettres (adab). It only proves the point that Islam inspires its adherents to think of science or knowledge not only for its spiritual and utilitarian value, but also as an act of worship. Some of the sayings attributed to the Prophet Muhammad elevated the pursuit of knowledge as an act of worship. The discourse on knowledge in Arabic sources frequently use two terms, ‘ilm and ‘aql. The former applies to sacred knowledge as well as profane science, and ‘aql connotes intellect or intelligence.

2.3. Unity of Knowledge: Religious, Rational and Experimental

The first subjects that began to take shape among Muslim scholars after the spread of Islam were related to the commentary on the Qur'an (tafsir), Traditions (Hadith) and Asma' al-Rijal (biographies of Hadith scholars), Sirah (Biography (of the Prophet) and Maghazi (Battles of the Prophet), Usul al-Din (theology), Fiqh (Jurisprudence) and Usul al-Fiqh (methodology/principles of Jurisprudence). The Arabic language was classified by Ibn Khaldun as an auxiliary science to explain the terminology of the Qur'an[31] . It would therefore appear that during the 1st and 2nd Hijri centuries a number of new subjects were gradually developed to explain the Qur'an, the Traditions and Islamic history. On the whole the study of basic religious sciences was given priority over other subjects.

The Islamic scholar Muhammad ibn Idris al-Shafi'i (d. 204/820) classified science into two broad categories, science of the bodies (‘ilm al-abdan) and science of the religions (‘ilm al-adyan)[32] . In the hierarchy of science Islamic scholars placed religious subjects at the top of their list, although secular sciences, such as mathematics, physics, chemistry, astronomy and philosophy were recognised as useful branches of knowledge. From the ‘Abbasid period onwards, Muslims were avid readers of religion, science and philosophy. In fact, religious and philosophical sciences developed in parallel. Although some religious scholars (the ‘ulama' and fuqaha') undervalued philosophical sciences[33] , such secular subjects were, however, widely tolerated, allowed to flourish in Islamic society and were accommodated in the educational curriculum. The critical attitude of the ‘ulama' towards the philosophical sciences has belatedly attracted severe criticism from some Orientalists[34] . More often than not, it seems quite clear that there was no clear division between sacred and profane sciences. Usually, scholars of the calibre of Ibn Khaldun divided science into two classes, namely the traditional sciences (‘ulum naqliyah) and the philosophical sciences (‘ulum 'aqliyah)[35] .

Figure 8a-b: The front and back of an Islamic Astrolabe in the Whipple Museum, Cambridge. This astrolabe is signed“Husain b. Ali” and dated 1309/10 AD. It is probably North African in origin, and is made of brass. It has four plates (for the front of the astrolabe, representing the projection of the celestial sphere and marked with lines for calculation), each for a specific latitude, and 21 stars marked on the rete (the star map, with pointers, fitting over the plate).

Many outstanding scholars emphasized the unity of knowledge. Thus scientists of the calibre of Jabir ibn Hayyan, al-Kindi, al-Khwarizmi, al-Razi, al-Biruni, al-Farabi and Ibn Sina were as adept in the religious (sacred) sciences as in the profane sciences of medicine, philosophy, astronomy or mathematics. They were conscious of the various dimensions of science.

The Prophet Muhammad was credited with a number of statements regarding cleanliness, health and medicine. These were collected together and became known to Muslims as the Prophetic medicine (al-tibb al-nabawi). A number of books bear this title, including one written by Ibn al-Qayyim al-Jawziyyah[36] and another by al-Suyuti[37] . These books contain some authentic statements of the Prophet and include herbal medicine and natural cures. Drinking honey and reciting the Qur'an are recommended as a panacea for all kinds of ailments. One such Tradition asserts that every disease has a cure[38] . In other words, God has provided cures for all kinds of disease. Commenting on this and other Traditions, Muhammad Asad says that when his followers read the Prophet's saying (quoted in al-Bukhyii):“God sends down no disease without sending down a cure for it as well” . They understood from this statement that by searching for cures they would contribute to the fulfilment of God's will. So medical research became invested with the holiness of a religious duty[39] Ibn Khaldun, while commenting on the Prophetic medicine, said that it resembled medicine of the nomadic type, which is not part of the divine revelation, and therefore is not the duty of Muslims to practise it[40] .

It is generally believed by Muslims that no contradiction exists between religion and science. However, this is not the case in Europe, as we shall see.

2.4. Maurice Bucaille's Theses

The relevance of science to scripture has been examined by a French scholar, Maurice Bucaille, whose study The Bible, the Qur'an and Science (an English version of his La Bible, le Coran et la science)[41] is relevant to our discussion. Bucaille, aware of the fact that Judaism, Christianity and Islam are Abrahamic religions, makes the following observations.

1. The Old Testament, the New Testament and the Qur'an differ from each other. The Old Testament, he claims, was composed by different authors over a period of nine hundred years. The Gospels, on the other hand, were the work of different authors, none of whom witnessed in person the life of Jesus. The latter merely relayed what happened to Jesus. Islam has something comparable to the Gospels in Hadith, which are collection of sayings and descriptions of the Prophet. Comparing the Gospels with the Hadith Bucaille says:“Some of the Collections of Hadiths were written decades after the death of Muhammad, just as the Gospels were written decades after Jesus. In both cases, they bear human witnesses to events in the past” [42] .

Some Western scholars, including Ignaz Goldziher and Joseph Schacht, have argued against the authenticity of certain Traditions. Even Bucaille wrote critically[43] of a few that dealt with the ‘creation myth' finding them incompatible with modern science. Such reservations inevitably offend Muslims, because the Traditions enshrine the moral and spiritual values of Islam. However, the author is equally critical of the four Canonic Gospels and cannot therefore be accused of bias or prejudice. In fairness to Bucaille, it should be said that he was studying the Scriptures from the point of view of science and not vice versa. His objectivity, though inevitably hurtful to some, is rare even in modern scholarship. The author boldly argues that Christianity does not have ‘a text that is both revealed and written down. Islam, however, has the Qur'an, which fits this description'[44] .

The Qur'an is an expression of the Revelation from God delivered by the Archangel Gabriel to Muhammad, which was memorised, written down by the Prophet's amanuences[45] and recited as liturgy. The Qur'an was thus fully authenticated. The Revelation lasted around twenty years. Muhammad himself arranged the chapters and the full text was compiled into a book by Caliph ‘Uthman ibn ‘Affan about eighteen years after the death of the Prophet(ca 650 CE).

2. Debates between the Biblical Exegists and Western scientists have arisen as a result of discrepancies between the Scriptures and science[46] . In contrast, many verses of a scientific nature can be found in the Qur'an. Bucaille asks:“Why should we be surprised at this when we know that, for Islam, religion and science have always been considered the twin sisters? From the very beginning Islam directed people to cultivate science; the application of this precept brought with it the prodigious strides in science taken during the great era of Islamic civilization, from which, before the Renaissance, the West itself benefited ” [47] .

Figure 9: The calendar scales (round the outside edge) on an Islamic astrolabe in the Whipple Collection, Cambridge, a case of calendrical applications of Islamic astrolabes. Islamic astrolabes have calendar scales on them that enable the positions of the moon and the dates of the lunar calendar to be calculated easily.

According to Bucaille, some verses of the Qur'an have puzzled interpreters until the discoveries of modern science attested to the truth. The range of the scientific data contained in the Qur'an is explored in the following pages.

The creation of the heaven and earth and everything in them happened in six days[48] . The term six“days” is interpreted by modern exegetes of the Qur'an as six“periods” or“stages” . The Qur'an also refers to a day as being equivalent to a thousand earthly years[49] . In another context, a day is described as being equivalent to 50,000 years[50] .

Moreover, some verses of the Qur'an refer to such things as ‘heaven and the earth being a solid mass[51] , which was ripped apart. There are references to navigation in the seas[52] ; and God created meat (fish)[53] for food, and precious objects, such as coral[54] (marjan) and pearls[55] for use as jewellery; that God created an orderly cosmos in which every planet, including the sun and the moon, moved along its prescribed orbit[56] . For instance, the sun does not overtake the moon[57] ; and that God created male and female for humans[58] as well as for vegetables and animal kingdoms[60] ; that man was created through the sex[61] act and that women's menstruation[62] is a time for sexual abstinence; that God created everything out of water[63] . God sends down rain[64] to revive the dead earth to produce and for growing grains, fruit and vegetable; and that He let the earth produce all kinds of food[65] ; that God created cattle to produce milk for humans[66] ; that He created horses, mules and donkeys as working animals[67] ; that He created the constellation[68] , and the sequence of day and night[69] as natural phenomena to remind people of God's majesty and power and to encourage them to study astronomy. There are many more examples, but these should suffice for our purpose.

Nowhere in the Qur'an is there anything which has been proven scientifically untrue? Thus Maurice Bucaille, after considering all the scientific data in the Qur'an concluded as follows:“In view of the level of knowledge in Muhammad's day, it is inconceivable that many of the statements in the Qur'an which are connected with science could have been the work of a man. It is, moreover, perfectly legitimate, not only to regard the Qur'an as the expression of a Revelation, but also to award it a very special place, on account of the guarantee of authenticity it provides and the presence in it of scientific statements which, when studied today, appear as a challenge to explanation in human terms” [70] .

Imbued with the values of the Qur'an, the early Muslims were psychologically ready to travel widely in search of all kinds of knowledge and were urged to study nature. Through trying to establish the coordinates of longitude and latitude of the Ka‘bah, the Muslims developed their knowledge of geography and cartography. Books were written and maps were used as illustrations. As a result of the study of science in other cultures through the translation of books in Greek, Sanskrit and Middle Persian at the institutions like the Bayt al-Hikmah in Baghdad from the 9th to the 11th century CE, the incipient scientific movement among the Muslims received a boost and contributed to the further development of science in the lands of the Caliphate.

3. The Seeds of Islamic Science

3.1. Some Chronology

During the first Islamic century (1-100 AH/ 622-719 CE), the Arabs were preoccupied with the propagation of Islam and with conquest of the Middle East and North Africa, which during the 2nd century (101-200 AH /719-815) was extended into Central Asia and the Iberian Peninsula. In the midst of these activities, the Arabs devoted themselves to the gathering of information on the life of the Prophet Muhammad and his Companions through the collection of Traditions, which were seen as essential for the practice of Islam and the administration of the Shari‘ah (Islamic Law). The spread of the early Islamised Arabs and Muslim from other ethnic origins over a far-flung territory in Asia and Africa enabled them to come into contact with the natives of those regions and thus initiate a process of gradual conversion to Islam.

As Muslims advanced into foreign territories, they were exposed to various cultural influences. At first these influences had no effect but after a while cultural integration resulted in the burgeoning of an active interest in the scientific and intellectual achievements of the older civilizations. Although the translation of foreign books began on a modest scale during the first Islamic century, it increased during the second and by the 3rd (9th century CE), it had had a profound effect on the intellectual milieu when Greek, Persian and Indian sciences became available in Arabic translation. It was around this time that the ideas of secular science began to flourish under the influence of such Muslim philosophers and scientists as al-Kindi, Jabir ibn Hayyan, al-Khwarizmi and al-Razi.

3.2. Defining Islamic Science

Let us try to define now Islamic science and try to explain how it came into being. The Qur'an made its greatest impact on Muslim minds by making them aware of the natural world. The Qur'an also referred to peoples in the past, such as the Ad and Thamud, the people of Lut (Ashab Lut), Moses, Banu Israel and the Pharaohs. This emphasis on antiquity appears to be deductive in purpose.

Taking these factors into account, Muhammad Iqbal came to some interesting conclusions. He thought that the Qur'an pointed to Nature and History[71] as sources of human knowledge. He also claimed that the birth of Islam heralded the birth of inductive intellect[72] . He therefore concluded that Islam bridges the ancient and the modern worlds. He justified such a claim by assuming that Islam belonged to the ancient world in so far as it used revelation but was essentially modern in spirit. These conclusions of Iqbal may be significant in so far as Islam has motivated its adherents to pursue vigorously both religious and secular science. Islam encouraged scholars the exploration of all kinds of knowledge. One explains the pursuit of Islamic science thus:“Islamic science came into being from a wedding between the spirit that issued from the Qur'anic revelation and the existing sciences of various civilizations which Islam inherited and which it transmuted through its spiritual power into a new substance, at once different from and continuous with what had existed before it” [73] .

Figure 10a-b: (a) manuscript view of the castle clock of Al-Jazari at the Museum of Fine Arts, Boston (Egyptian manuscript, Mamluk period, Accession number: 14.533).; (b) view of the computer assisted reconstruction of the castle clock by FSTC. See Professor Salim T. S. Al-Hassani, Al-Jazari's Castle Water Clock: Analysis of its Components and Functioning (published on www.MuslimHeritage.com).

4. Translation as a Source of Knowledge

Just as certain political events create hostilities between nations that end in cooperation so, in human history major political events have long term intellectual consequences. One such consequence is the translation of foreign books and the transmission of ideas across cultures. When Alexander the Great conquered Asia Minor, Syria, Egypt, Persia, Afghanistan and the Indus Valley, many rulers were unseated, including Emperor Darius of Persia. Some of Alexander's generals were appointed governors or administrators of these territories, and on Alexander's death the Ptolemies ruled Egypt and the Seleucids Mesopotamia and Persia. The long term consequence of these conquests was the spread of Greek thought throughout much of Asia and Egypt in the fields of philosophy, art and science.

Long after the fall of the Greek Empire, the empire of Darius was revived by the Sassanid dynasty, and some of the former territories of the Greek Empire, including Asia Minor, Syria and Egypt were incorporated into the Byzantine or Eastern Roman Empire. The Sassanian and the Byzantine emperors fought one another until the early 7th century CE. It was in this century that the Arabs, an isolated people of the Arabian Peninsula who were least influenced by neighbouring civilizations, emerged with a new political vigour and spiritual vision. Within a short period they had conquered the Sassanian Empire and the Byzantine provinces of Syria and Egypt.

Consider the Sassanid legacy to the Arabs. Persia, being situated between Byzantium and India, had absorbed both Greek and Indian influences. As George Sarton puts it:“Arabic science was the fruit of Semitic genius fertilized by the Iranian genius” [74] . This theory may explain some points regarding the role of the Arabs and Persians during the formative period of Islamic science. Sarton also gives a historical perspective on Arabic/Islamic science when he claims that the ‘almost unbelievable development of Arabic science did not begin until the second half of the 2nd century Hijrah'[75] . This places the approximate time of birth of Islamic science in the late 8th century CE, a view which has recently been endorsed by Dimitri Gutas, who maintains that secular Greek texts were not translated into Syriac before the Abbasids came to power and that no scientific text was translated into Arabic during the Umayyad era[76] . In other words, he denies that any translations from Greek and Syriac into Arabic occurred under the Umayyads, and that ‘the bulk of the Greek scientific and philosophical works were translated into Syriac as part of the Abbasid translation movement during the 9th century'[77] . One of the reasons for this conclusion was the assumption that pre-Abbasid society did not provide a social, political and scientific context. However, such a thesis is not entirely defensible in the light of the various individual translation initiatives during the Umayyad period.

The Abbasid Caliphs, who succeeded the Umayyads after 132 AH/749/50 CE, had a significant role in the development of Islamic science. The foundation of Baghdad in 145 AH/762 CE by Caliph al-Mansur ushered in a new political era in the history of the Middle East. The new ‘city of Peace' (Madinat al-Salam), saw a coalition between the Arabs and Persians under the second Abbasid Caliph Abu Ja‘far al-Mansur (754-775 CE), who has been credited with initiating the Arabic translation movement. Of the several astrologers in his service, Nawbakht was a Persian who converted from Zoroastrianism to Islam and Masha'Allah al-Yahudi was a Jew. Other astrologers at his court were Muslims, such as Ibrahim al-Fazari and ‘Umar al-Tabari. Some scholars have suggested that Nawbakht initiated the translation of some Persian texts into Arabic, though the books are not identified. It has also been claimed, though without evidence, that the Barmakid family of Secretaries and Ministers (Wazirs), who were influential in early Abbasid bureaucracy during the 8th century CE, had financed the translation of some Pahlavi (Middle Persian) texts into Arabic. However, we are on surer ground when we consider the role of Ibn al-Muqaffa‘ in the translation of some Pahlavi books into Arabic.

Abdullah ibn al-Muqaffa' (a Persian convert, formerly called Rozbih, born 720-d. 756 CE) was regarded as one of the geniuses of early ‘Arabic literary prose'. He published literary works/ belles lettres (adab) such as Adab al-Kabir wa Adab al-Saghir and translated from the Pahlavi Kalilah wa-Dimnah[78] (the Fables of Bidpai, which were originally translated from Sanskrit into Pahlavi). He also translated the Pahlavi Khuday-Nama (Book of Kings) into Arabic (Siyar Muluk al-A‘jam), of which excerpts survived in Ibn Qutaybah's Taj-nama. Although primarily known as a translator from Pahlavi, some scholars credit him (or his son, Muhammad) with translating some Greek texts into Arabic[79] . Persian wisdom literature immortalised the names of ancient Sassanian Kings, such as Anushirvan, in Arabic literature. To this period also belongs the translation of Persian astronomical works into Arabic, such as Zij-i-Shayriyar or Zij-i Shah (Royal Astronomical Tables). Astronomy and medicine were subjects of special interest to early Muslim men of science and physicians. Ibn al-Qifti claimed in 156 AH/773 CE that an Indian traveller brought into Baghdad an Indian manuscripts on mathematics and astronomy entitled Sidhdhanta (Arabic version Kitab al-Sindhind), which the Caliph al-Mansur wished to be rendered into Arabic. This Indian manuscript, which Ibrahim al-Fazari[80] undertook the task of translating, was related to such astronomical works, as Aryabhatiya by Aryabhatta and Khandakhadyaka by Brahmagupta and the Brahmapaksa[81] . It introduced to the Arabs not only aspects of Indian astronomy but also the Indian numerals. The names of Ibrahim al-Fazari and Ya‘qub bin Tariq were initially associated in Baghdad with the Sindhind school of astronomy.

It was Caliph al-Mansur who invited to Baghdad Jurjis (Georges) bin Bukhtishu‘[82] , the senior physician at the Jundishapur hospital and medical college in Ahwaz (Fars). To cure al-Mansur of his illness, he received ten thousand dinars. During the reign of al-Mansur's grandson, Harun al-Rashid, medical experts from Jundishapur were recruited to found Baghdad's first hospital.

Curiosity concerning astronomy and astrology was noticeable during the early Abbasid period. Even the orthodox Abbasid Caliph Muhammad al-Mahdi (158-169 AH /775-785), who suppressed heresies, including Manichaeism (zandaqah), was superstitious about astronomy and astrology, as is shown from his patronage of two astronomers, including Abu Sahl ibn Nawbakht. It was in his reign that the Aristotelian work Topics (topoi), translated by Athanasias of Balad (d. 686), was brought to the attention of the Caliph.

Al-Mahdi's son, Harun al-Rashid (170-193 AH/786-809 CE), was well known as connoisseur of talented artists, philosophers and scientists. He, his son Caliph al-Ma'mun and the Barmakid viziers were among those of wealth and power who commissioned men like ‘Allan al-Shu‘ubi to copy translations of Greek and Syriac manuscripts, including Aristotle's Physics, which had been rendered into Arabic by Sallam al-Abrash.

In addition to this large body of translation into Arabic, existing translations were amended by scholars. Most translators were Christians belonging to either the Orthodox Church, or Jacobites and Nestorians[83] . There were also Jews, Sabean (pagan star worshippers) of Harran and Arab Muslims. The majority of this work was undertaken between 800 and 1000 CE, and covered subjects including philosophy, politics, astronomy, geometry, zoology and medicine.

The translation of philosophical texts reached an apogee during the Caliphate of Abdullah al-Ma'mun (813-33 CE) and his successors. The translation movement declined and ended during the Buwayhid period (945-1055CE). These men took a personal interest in the progress of theology, philosophy, science and literature. Some families associated with the Abbasids became patrons of scholars and translators.

Most notable among the early translators were Banu Musa Bin Shakir, Abu Ishaq al-Kindi, Masarjawaih, Yuhanna ibn Masawaih, Hunayn ibn Ishaq al-‘Ibadi, Thabit ibn Qurrah and Qusta ibn Luqa. Some of these should be examined more closely.

The astronomer Musa bin Shakir[84] was associated with prince Abdullah al-Ma'mun before his rise to power. When Ibn Shakir died prematurely his three sons, Ahmad, Muhammad and al-Hasan (who became celebrated as mathematicians) were the wards of al-Mamun, and each achieved success as a patron of translators. Muhammad, the eldest of Ibn Shakir's sons, employed Thabit ibn Qurrah in his house (library) and other translators worked for him at Bayt al-Hikmah. The wealthy family of Banu Musa paid 500 dinars a month to translators and were responsible for twenty translations covering such subjects as astronomy, mathematics and mechanics. Ahmad b. Musa b. Shakir himself has been credited with writing Kitab al-Hiyal, a book on mechanics and inventions.

Figure 11a-b: Two pages from Zakariya ibn Muhammad al-Qazwini's works (died 682/1283), both at the The British Library in London: (a) A 14th-century CE manuscript of al-Qazwini's Aja'ib al-makhluqat (The Wonders of Creation), MS Or. 14140; (b) Athar al-bilad wa-akhbar al-'ibad, the geography of al-Qazwini, MS Or.3623.

One outstanding translator of this period was Hunayn ibn Ishaq[85] who worked under Harun al-Rashid, al-Ma'mun, al-Mu‘tasim and al-Muwakkil ‘ala-Allah. He was familiar with Syriac, spoke Arabic and late in his career mastered Greek at Alexandria or Byzantium. He travelled from Baghdad through Syria, Palestine and Egypt in search of Syriac and Greek manuscripts. To Hunayn goes the credit for translating into Arabic a substantial body of Greek medical writings, including Kitab al-Masa'il fi'l-tibb (Medical Questions for beginners) and an original treatise on opthalmology, al-Masa'il fi'l-'Ayn. He regarded the Hippocratic Oath as a genuine work, which he translated into Arabic. He also published a bibliography of one hundred medical works by the Roman physician Galen (Kitab Istikhraj Kammiyat Kutub Jalinus). His translations from Syriac and Greek inspired his son, Ishaq ib. Hunain and his nephew Hubaish, whose works he supervised. According to Strohmaier, he was ‘the most important mediator of ancient Greek science to the Arabs[86] .'

Thabit ibn Qurrah (d.288/901) of Harran, a Syriac speaking person who wrote and translated into Arabic, was associated with Banu Musa ibn Shakir by whom he was inspired to learn mathematics, astronomy and philosophy. Among the celebrated Greek texts he translated was Nichomachus's Kitab Nichomachus fi'l al-Arthamatiqi[87] (Nichomachus of Gerasa's book on Arithmetic). He also revised earlier translations of Ptolemy's Kitab al-Majisti and Euclid's Elements. Although primarily a mathematician, he also wrote on medicine and music.

Other celebrated translators included Qusta bin Luqa, a Syrian Christian from the Ba‘labakk region who was well versed in the Syriac,Greek and Arabic languages and collected Greek manuscripts from Byzantium, which he carried to Baghdad to translate. According to Ibn al-Qifti, he was a contemporary of the first notable Arab philosopher, Ya‘qub ibn Ishaq al-Kindi. He was known to be a versatile scholar, knowledgeable in contemporary astronomy, geometry, mathematics, natural science and medicine[88] , and like many of his contemporaries, a scientist in his own right.

Apart from private collections of foreign manuscripts, there were also public libraries founded during the 2nd-4th century AH /8th-10th century CE, which were designated by the following terms: Bayt al-Hikmah, Khizanat al-Hikmah, or Dar al-Hikmah, or Dar al- ‘ilm, Dar al-Kutub, Khizanat al-Kutub and Bayt al-Kutub. The Bayt al-Hikmah (also known as Khizanat al-Hikmah), according to Shalabi, was founded in Baghdad by Caliph Harun al-Rashid. Others maintain, however, that caliph al-Ma'mun established it. At the time of Ali ibn Yahya al-Munajjim (d. 275/888), there flourished an institution known as Khizanat al-Kutub and Khizanat al-Hikmah[89] . Since the 9th century CE, many more libraries housed books of foreign sciences. Some of these libraries were privately owned, while others were established by Caliphs, Amirs (governors), Sultans and Wazirs. For instance, in Abbasid Mawsil (Mosul) there existed a large library called Khizanat al-Kutub. Similarly, a wealthy textile trader, Ali b. Muhammad al-Bazzaz (d. 323/942), was said to have possessed a Bayt al-‘ilm (library; lit. house of science or knowledge). Sabur bin Ardashir (d. 416/ 991) bought a house, Dar al-‘ilm, in which he kept ten thousand volumes of manuscripts on all subjects. By the 4th century AH/10th century, there was a proliferation of libraries and institutions, which had been founded in Basrah, Isfahan, Nishapur, Ramhurmuz, Rayy and Cairo[90] . Some of the books in similar libraries were listed by Ibn al-Nadim in his bibliographical compilation al-Fihrist and in Ibn al-Qifti's biographies of scientists and philosophers, Ta'rikh al-Hukama', Ibn Abi Usaybiyah's ‘Uyun al-Anba' fi-Tabaqat al-Atibba' and, for Muslim Spain, by Ibn Juljul's Tabaqat al-Atibba' wa'l-Hukama'. These works provide biographical and bibliographical information about Muslim scientists and philosophers of all ethnic backgrounds up to the 13th century CE. Modern historians and bibliographers of Islamic science, including George Sarton, Carl Brockelmann and Fuat Sezgin, have identified and described manuscripts and printed books on the history of Islamic science.

5. Islamic Science or Arabic Science

There is a tendency among some modern writers, including Abdulhamid Sabra and Muhsin Mahdi, to describe Islamic Science as ‘Arabic Science'. One should not attach any special significance to this new description of an old subject. Is it simply a question of terminology and nothing else? What exactly is Arabic Science?

Figure 12: End of the second part of the Arabic translation by Abû 'Uthmân al-Dimashqî (died ca 920) of Aristotle's Organon, Rhetoric and Poetics, copied in 1027. Bibliothèque Nationale de France, Paris, MS Arabe 2346, folio 264v-265r.

The science which the early Muslims acquired through the translation of ancient books on scientific texts came to be known as Islamic Science, which is currently being described by some as Arabic science. Sabra and Sarton tried to define Arabic science,which is so called because, first, it owed its beginning to Arab initiative and patronage; secondly, because such science used Arabic as its linguistic medium;and thirdly, because the Arabic language was seen as a unifying factor which enabled the ancient scientific heritage to be carried, which was a fact of specific significance for ‘the general history of science and culture as well as for the history of science in Islam[91] .' Sabra also acknowledged that premodern translations into Arabic led to ‘an accumulation of scientific learning that surpassed anything previously known'. On the other hand, George Sarton compares the Arab acquisition of Greek and Indo-Persian science to the Meiji assimilation of modern science and technology. Islamic rulers of the Abbasid dynasty made the best of Greek knowledge available in Arabic. Pleading for an understanding of the Arab contribution to science Sarton states that ‘the scientific books written in Arabic durng the Middle Ages were, for a few centuries, the main vehicle of the living science'[92] . Moreover, he notes that some historians tried to minimise the Arab achievements and contributions to science by claiming that Arabic science lacked originality and that the Arabs were ‘nothing but copycats'.Such a judgement, according to Sarton, was wrong[93] .

Sarton justifies his statement by saying that the Arabs created a genuine ‘hunger for knowledge' and that they not only translated from the Greek and other sources but before long had begun to transform the knowledge they had gained into something new. For instance, in the field of mathematics, rather than copy Greek and Sanskrit sources they fertilised Greek sources with Hindu ones. Sarton also claims that ‘if these were not inventions, then there are no inventions in science. A scientific invention is simply the weaving together of separate threads and the tying of new knots. There are no inventions ex nihilo'[94] .

It is possible that Arab scientists did not realise the value of their discoveries. Thousands of Arabic manuscripts on science are scattered in different collections across the globe. Until these texts are edited and analyzed historians of science cannot know the true extent of the Arab contribution to premodern science.

Professor Muhsin Mahdi explains why the study of Arabic science is desirable:“In the absence of an adequate historiography of the history of Arabic science, a preliminary typology of approaches may prove useful.”

‘In the Arab world, widespread interest in the history of Arabic science is due to the special status of modern science and the perception that modern science must be acquired if the third world is to modernise itself; the fact that Arabic science existed in the past is meant to prove that the acquisition of modern science is at least possible. In the West, the relative neglect of the history of Arabic science is part of the neglect of the history of science in general[95] ... The study of Arabic science in the Western world aims at discovering those aspects of Arabic science in which advances were made or which contributed to the rise of modern science; and the study of Arabic science in the Arab world is meant to prepare the way for the appropriation of modern science and technology. In every case modern science and technology is taken to be the aim of scientific development and the measure by which earlier science is to be judged. History, on the other hand, is thought to be a method to be used in search for, collecting, organising and presenting the Arabic science of the past.: ....What then is the history of Arabic science -Arabic science and philosophy cannot be separated in the period under discussion without doing violence to each of them; and generally speaking, science should be understood to include the philosophic sciences[96] .” These statements are selected at random on account of their relevance to our investigation into Arabic or Islamic science.

Due to shortage of serious studies on Arab science discoveries (at the end of the second millennium CE) our understanding of its origins and achievements must remain incomplete. Some of the relevant facts, however, could be summarised.